Стереометрии в экзаменационных вариантах ЕГЭ по математике посвящены задачи B9 и C2, первые попроще, вторые посложнее. О некоторых методах решения задач C2 можно почитать в статье «Как решать задачи C2 ЕГЭ по математике — советы репетитора». В данной статье мы подробно остановимся на решении задач B9. Причем как репетитор по физике и математике постараюсь построить изложение таким образом, что через решение простых заданий B9 мы будем переходить к решению более сложных задач C2 по стереометрии из ЕГЭ, связанных с теми же пространственными фигурами и величинами. Как всегда материал будем разбирать на конкретных примерах из вариантов ЕГЭ по математике прошлых лет.
Posts by Сергей Валерьевич
Задание B14 в ЕГЭ по математике завершает первую его часть, представляющую собой, по сути, итоговую контрольную работу по курсу математики 11 класса. К выполнению заданий только первой части ЕГЭ репетиторы по математике готовят учащихся, цель которых — спокойная сдача экзамена и получение хорошей отметки по математике в аттестат. Во второй части ЕГЭ по математике присутствуют задания, умение решать которые понадобится выпускникам, собирающимся поступать в вузы, учебная программа которых в той или иной мере связана с математикой, на что обращает внимание при подготовке своих занятий профессиональный репетитор.
Зачастую студенты предпочитают откладывать сдачу всех работ на самый последний момент. Поэтому для многих преподавателей работа в авральном режиме во время экзаменационной сессии стала уже привычной. Предлагаю вашему вниманию решение контрольной работы по математической статистике для II курса Московского отделения Всероссийского Заочного Финансово-Экономического Института (ВЗФЭИ).
Время от времени посетители сайта, узнав, что я являюсь действующим сотрудником МПГУ (Московского Педагогического Государственного Университета) и непосредственно связан с преподаванием физики в этом вузе, задают мне вопрос, занимаюсь ли я решением контрольных работ для студентов. Иногда этот вопрос звучит в более «мягкой» форме, а именно, осуществляю ли я помощь в выполнении контрольных работ по физике и математике для студентов вузов. Как бы то ни было, смысл остается тем же. Отвечаю вам на этот вопрос, уважаемые читатели.
Я являюсь действующим репетитором по физике и математике в Москве и занимаюсь в основном подготовкой школьников к сдаче ГИА и ЕГЭ по физике и математике. Однако, иногда (в случае наличия свободного времени) из интереса к вузовскому курсу математики я могу помочь студентам при выполнении контрольных работ по физике и математике (конкретно, по общей физике, классической механике и электродинамике, алгебре и геометрии, математическому анализу, теории вероятностей и математической статистике). Решил сегодня поделиться с вами одной из последних контрольных работ по дисциплине «Теория вероятностей» для II курса Московского отделения Всероссийского Заочного Финансово-Экономического Института (ВЗФЭИ).
Во время сдачи ЕГЭ по математике использование калькулятора, как известно, запрещено. Поэтому любой репетитор по математике всегда заставляет своих учеников считать все устно или на бумаге. Но время от времени встречаются задачи, при решении которых требуется извлекать квадратные корни из достаточно больших чисел, и на ЕГЭ по математике такие задачи тоже есть. С проблемой нахождения алгоритма вычисления квадратного корня из вещественного числа читатель может столкнуться (помимо ЕГЭ по математике) на различного рода математических конкурсах и олимпиадах. Итак, как найти квадратный корень без использования калькулятора?
Как репетитор по физике и математике могу сказать без преувеличения, что основной целью обучения является понимание учеником основных принципов, по которым устроена окружающая действительность. Решая насущные проблемы подготовки ученика к сдаче ЕГЭ по математике, репетитор не должен забывать и об этой очень важной мировоззренческой задаче. Всякая наука подходит к этой проблеме с разных сторон. В математике и физике весьма распространен метод моделирования, позволяющий на основании анализа некоторых функциональных зависимостей понимать как функционирует та или иная система и уметь прогнозировать ее поведение в будущем.
Что важнее для современных школьников и зачастую их родителей: блестящее знание математики или высокие баллы по результатам сдачи ЕГЭ по математике? «Сдать ЕГЭ!» — ответ многих. Красивые разговоры о пользе математики, которая приучает логически мыслить и «приводит в порядок ум» не помогут добиться конкретной цели — успешно сдать экзамен и поступить в ВУЗ. Перед репетиторами по математике последнее время все чаще ставится совершенно определённая задача — подготовка к ЕГЭ по математике, которую нужно обязательно решить. И здесь возникает следующий вопрос.
До сдачи ЕГЭ по математике остается все меньше времени. Обстановка накаляется, нервы у школьников, родителей, учителей и репетиторов натягиваются все сильнее. Снять нервное напряжение вам помогут ежедневные углубленные занятия по математике. Ведь ничто, как известно, так не заряжает позитивом и не помогает при сдаче экзаменов, как уверенность в своих силах и знаниях. Сегодня репетитор по математике расскажет вам о решении систем логарифмических и показательных неравенств, заданий, традиционно вызывающих трудности у многих современных старшеклассников.
Вы рассчитываете, что репетитор поможет вам правильно организовать подготовку к экзаменам, предоставив необходимый объем знаний, и обеспечит получение максимально высокого балла на ЕГЭ? Эти надежды в полной мере будут оправданы при условии ответственного выбора педагога. В данной статье приведены некоторые советы по выбору репетитора, следуя которым, можно повысить эффективность занятий с репетитором и успешно подготовиться к предстоящей к сдаче ЕГЭ.