Очень часто среди заданий ЕГЭ, вступительных экзаменов и олимпиад по математике встречаются задачи, в которых каким-либо образом задаётся положение корней уравнений с параметром на числовой оси и требуется найти все возможные значения параметра, при которых имеет место такое расположение. Данная статья посвящена разбору нескольких заданий такого рода.
Читать дальше »Статьи с метками ‘подготовка к ЕГЭ по математике с репетитором’
Очень часто в ЕГЭ, ОГЭ и других экзаменах по математике встречаются задачи, в которых требуется найти длину медианы треугольника, если известны его стороны. Это действительно возможно, ведь длины трёх сторон треугольника полностью его определяют. В данной статье профессиональный репетитор по математике и физике объясняет, как это можно сделать.
Читать дальше »Данная статья посвящена разбору решенией неравенств (логарифмических и неравенств с модулем) методом рационализации. Данный метод становится в последнее время всё более популярным, поскольку помогает существенно упростить решение неравенств, которые встречаются во второй части профильного ЕГЭ по математике. Так что, если вы готовитесь к сдаче этого экзамена и не знакомы с решением неравенств методом рационализации, данная статья может оказаться для вас чрезвычайно полезной.
Читать дальше »
Статья посвящена разбору заданий 15 из профильного ЕГЭ по математике за 2017 год. В этом задании школьникам предлагают для решения неравенства, чаще всего логарифмические. Хотя могут быть и показательные. В данной статье приводится разбор примеров логарифмических неравенств, в том числе содержащих переменную в основании логарифма. Все примеры взяты из открытого банка заданий ЕГЭ по математике (профиль), так что подобные неравенства с большой вероятностью могут попасться вам на экзамене в качестве задания 15. Идеально для тех, кто за коротких промежуток времени хочет научиться решать задание 15 из второй части профильного ЕГЭ по математике, чтобы получить больше баллов на экзамене.
Читать дальше »
Практически с полной уверенностью можно сказать, что хотя бы одна задача на окружность обязательно встретится вам на ЕГЭ по математике профильного или базового уровня. В профильном варианте ЕГЭ такие задачи встречаются под номерами 6, 16 и, как эти ни странно, 18. Последнее задание ассоциируется обычно с параметрами, но если вы дочитаете эту статью до конца, то узнаете, как окружность может иногда помочь решить такого рода задания. Конечно, задачи на окружность в ЕГЭ могут попасться и в заданиях по стереометрии, но в этой статье речь пока пойдёт только о заданиях, связанных с планиметрией. В конце концов, первый шаг в освоении мастерства решения задач по стереометрии — это решение планиметрических задач.
Читать дальше »
В данной статье речь пойдёт о решении задачи 19 из варианта досрочного профильного ЕГЭ по математике, предлагавшегося для решения школьникам в 2016 году. Решение задачи 19 из ЕГЭ по математике (профильный уровень) традиционно вызывает наибольшие затруднения у выпускников, ведь это последняя, а потому обычно самая сложная задача из экзамена. По крайней мере, такое впечатление часто складывается в умах школьников, готовящихся к ЕГЭ. Но на самом деле ничего очень сложного в этих задачах нет. Посмотрите, например, как легко решается следующая задача 19 из профильного ЕГЭ по математике.
Читать дальше »
В данной статье разобраны решения геометрических задач, встречающихся в вариантах профильного ЕГЭ по математике. Всего таких задач 5: 3 из первой части и 2 из второй. По крайней мере, такой расклад был на момент написания статьи. Представленные материалы будут полезны тем, кто только начал подготовку к предстоящему экзамену. Здесь вы найдёте геометрические задачи ЕГЭ с решениями, снабжёнными подробными и понятными комментариями от профессионального репетитора по математике. Представлен также видеоразбор решений каждого задания.
Читать дальше »
При изучении тригонометрии в школе каждый ученик сталкивается с весьма интересным понятием «числовая окружность». От умения школьного учителя объяснить, что это такое, и для чего она нужна, зависит, насколько хорошо ученик поймёт тригонометрию впоследствии. К сожалению, далеко не каждый учитель может доступно объяснить этот материал. В результате многие ученики путаются даже с тем, как отмечать точки на числовой окружности. Если вы дочитаете эту статью до конца, то научитесь делать это без проблем.
В этой статье я расскажу об одном эффективном способе решения иррациональных неравенств. То есть таких неравенств, которые содержат неизвестную величину под знаком корня. Данный материал очень редко изучается в школа. Разве что в школе с углублённым изучением математики, да и то не всегда. А ведь научиться решать иррациональные неравенства, используя этот способ, очень важно. Поэтому дочитайте эту статью до конца или посмотрите мой видеоурок (ссылка ниже в тексте). Информация, которую вы получите, может очень пригодиться при сдаче ОГЭ, ЕГЭ или вступительных экзаменов по математике.
В данной статье представлен разбор заданий 9-12 части 2 ЕГЭ по математике профильного уровня от репетитора по математике и физике. Видеоурок репетитора с разбором предложенных заданий содержит подробные и понятные комментарии по каждому из них. Если вы только начали подготовку к ЕГЭ по математике, данная статья может оказаться для вас очень полезной.