При решении задач по геометрии из ЕГЭ и ОГЭ по математике довольно часто возникает необходимость, зная две стороны треугольника и угол между ними, найти третью сторону. Или же, зная все стороны треугольника, найти его углы. Для решение этих задач вам потребуется значение теоремы косинусов для треугольника. В данной статье репетитор по математике и физике рассказывает о том, как формулируется, доказывается и применяется на практике при решении задач данная теорема.
Читать дальше »
Статьи с метками ‘школьный курс математики’
В данной статье я отвечаю на очередной вопрос от моих подписчиков. Вопросы приходят разные. Не все из них корректно сформулированы. А некоторые из них сформулированы так, что не сразу получается понять, о чём хочет спросить автор. Поэтому среди огромного множества присылаемых вопросов приходится отбирать действительно интересные, такие «жемчужины», отвечать на которые не просто увлекательно, но ещё и полезно, как мне кажется, для других моих читателей. И сегодня я отвечаю на один из таких вопросов. Как изобразить множество решений системы неравенств?
Читать дальше »
В данной статье репетитор по математике и физике отвечает на вопрос, чему равен угол между биссектрисами смежных углов. Как оказалось, этот вопрос волнует многих школьников, которым предстоит сдавать ЕГЭ или ОГЭ по математике. Интересно то, что этот материал изучается в 7 классе, когда школьники только начинают своё знакомство с премудростями геометрии. Дочитайте эту статью до конца, и вы не только узнаете чему равен угол между биссектрисами смежных углов, но и поймёте, как это можно очень легко доказать.
Читать дальше »
В данной статье речь пойдёт о том, как выразить площадь многоугольника, в который можно вписать окружность, через радиус этой окружности. Сразу стоит отметить, что не во всякий многоугольник можно вписать окружность. Однако, если это возможно, то формула, по которой вычисляется площадь такого многоугольника, становится очень простой. Дочитайте эту статью до конца или посмотрите прилагающийся видеоурок, и вы узнаете, как же выразить площадь многоугольника через радиус вписанной в него окружности.
В 8 классе на уроках геометрии в школе ученики впервые знакомятся с понятием выпуклого многоугольника. Очень скоро они узнают, что эта фигура обладает очень интересным свойством. Какой бы сложной она ни была, сумма всех внутренних и внешних углов выпуклого многоугольника принимает строго определенное значение. В данной статье репетитор по математике и физике рассказывает о том, чему равна сумма углов выпуклого многоугольника.
Читать дальше »
В 8 классе школьники на уроках математики знакомятся с таким понятием, как «радикал» или, попросту говоря, «корень». Тогда же они впервые сталкиваются с такой проблемой, как упрощение сложных радикалов. Сложные радикалы – это такие выражения, в которых один корень находится под другим. Поэтому их ещё иногда называют вложенными радикалами. В данной статье репетитор по математике и физике подробно рассказывает о том, как упростить сложный радикал.
Данную задачу прислала одна из читательниц моего блога с просьбой объяснить решение. Задача показалась мне достаточно интересной, поэтому я решил написать про неё отдельную маленькую статью. Итак, давайте вместе разберёмся с задачей и её решением.
Когда вы только начинали изучать квадратные корни и способы решения иррациональных уравнений (равенств, содержащих неизвестную под знаком корня), вы, вероятно, получили первое представление об их практическом использовании. Умение извлекать квадратный корень из чисел также необходимо для решения задач на применение теоремы Пифагора. Эта теорема связывает длины сторон любого прямоугольного треугольника.
Построение графика квадратичной функции всегда было проблемой для многих школьников. Проблема в том, что на уроках в школе этому важнейшему материалу зачастую уделяют не достаточно внимания. В результате, когда появляется необходимость, ученику очень трудно отыскать в школьном учебнике или интернете чёткий алгоритм построения графика квадратичной функции (параболы), а вместо этого приходится по крупицам выискивать необходимую информацию из множества различных источников. Решим эту проблему раз и навсегда! В данной статье репетитором по математике и физике представлен алгоритм построения параболы.
Считается, что чем больше различных решений существует у задачи, тем она интереснее с математический точки зрения. В этом отношении, задача, которую мы рассмотрим сегодня, является одной из наиболее интересных в школьном курсе геометрии. Она же, кстати, была предложена для решения в задании 24 модуля «Геометрия» демонстрационного варианта ОГЭ по математике в 2015 году. Так что попробуем решить её максимально возможным количеством способов, не выходящих за рамки школьного курса. Присылайте, пожалуйста, свои варианты решения в комментариях или на почту репетитора по математике и физике. С удовольствием опубликую их и поставлю ссылку на вашу анкету или сайт, если это необходимо.