В данной статье представлен разбор заданий 9-12 части 2 ЕГЭ по математике профильного уровня от репетитора по математике и физике. Видеоурок репетитора с разбором предложенных заданий содержит подробные и понятные комментарии по каждому из них. Если вы только начали подготовку к ЕГЭ по математике, данная статья может оказаться для вас очень полезной.
9. Найдите значение выражения
|
Используя свойства логарифмов, с которыми вы можете подробно ознакомиться в данной статье или в предлагаемом выше видеоуроке, преобразуем выражение:
10. Пружинный маятник совершает колебания с периодом T = 16 с. Масса подвешенного груза m = 0,8 кг. Скорость движения груза изменяется с течение времени в соответствии с формулой . При этом м/с. Определяющая формула кинетической энергии (в джоулях) имеет вид: , где m берётся в килограммах, — в метрах в секунду. Чему в джоулях равна кинетическая энергия груза через 10 с после начала колебательного движения? |
Скорость движения груза через 10 с после начала колебательного движения будет равна:
м/с.
Тогда кинетическая энергия в этот момент времени будет равна:
Дж.
11. Известно, что 6 леденцов стоят дешевле шоколадки на 2%. На сколько процентов 9 таких леденцов стоят дороже шоколадки? |
Пусть x — цена одного леденца, а y — цена шоколадки. Тогда 6 леденцов стоят 6x, а 2% от стоимости шоколадки равны 0,02y. Поскольку известно, что 6 леденцов стоят дешевле шоколадки на 2%, то имеет место первое уравнение: 6x + 0,02y = y, из которого получаем, что x = 0,98/6 y = 98/600 y = 49/300 y. В свою очередь 9 леденцов стоят 9x, то есть 9·49/300 y = 49/300 y = 1,47 y. Задача сводится к тому, чтобы определить на сколько процентов 1,47y больше, чем y. Если y составляет 100%, то 1,47y составляет 1,47·100% = 147%. То есть 1,47y большем, чем y на 47%.
12. Найдите точку минимума функции . |
Используем алгоритм нахождения точек экстремума (минимума и максимума) функции:
1) ОДЗ задаётся неравенством: (так выражение, стоящее под знаком логарифма, должно быть больше нуля), откуда получаем, что .
2) Ищем производную функции. Подробный рассказ о том, как вычисляется производная данной функции, смотрите в видео выше. Производная функции равна:
3) Ищем значения x, при которых производная равна 0 или не существует. Она не существует при , так как в этом случае знаменатель обращается в нуль. Производная обнуляется, когда:
Последняя дробь равна 0 при .
4) Наносим на числовую прямую ОДЗ, точки в которых производная не существует, а также точки, в которых она равна нулю. Далее определяем, какова по знаку производная (положительная или отрицательная) на каждом из полученных промежутков:
Как видно, производная меняет свой знак с отрицательного на положительный в точке . Значит это и есть точка минимума.
Материал подготовил репетитор по математике и физике, Сергей Валерьевич
Смотрите также:
Добавить комментарий