В данной статье репетитор по математике и физике рассказывает о простом способе решения достаточно сложной задачи на относительность движения, которому вас не научат в школе. Материал разобран на примере задачи о движущихся подводных лодках. Дочитайте эту статью до конца. Знания, которые вы получите, могут очень пригодиться на экзамене или олимпиаде по физике.
Подводная лодка-разведчик и подводная лодка-обнаружитель движутся на одной глубине по взаимно перпендикулярным траекториям. Лодка-разведчик — с запада на восток со скоростью км/ч, лодка-обнаружитель — с юга на север со скоростью км/ч. Известно, что в 12:00 лодка-разведчик находилась прямо по курсу относительно лодки-обнаружителя, и расстояние между ними составляло км. Обнаружит ли в процессе движения лодка-обнаружитель присутствие лодки-разведчика, радиус обнаружения которой при текущих погодных условиях составляет км? Если да, то в какой момент времени это произойдёт? |
Решение задачи на относительность движения
Для наглядности изобразим рисунок к задаче. Зона обнаружения лодки-разведчика обведём на рисунке красной пунктирной окружностью:
Постараемся определить сперва минимальное расстояние, которое будет между подводными лодками в процессе их движения. Если решать задачу в системе отсчёта, связанной с землёй, то для нахождения минимального расстояния между подводными лодками потребуется очень много времени и сил. Нужно будет найти зависимость расстояния между субмаринами от времени и исследовать получившуюся функцию на минимум с помощью производной. Всё это долго и сложно.
Разберём гораздо более простой способ. Для решения этой задачи используем принцип относительности движения. В чём он заключается? В том, что характер движения любого тела зависит от выбора системы отсчёта, относительно которой это движение рассматривается. Говорят, что Эйнштейн в своё время любил задавать вопрос: «В каком часу станция отходит от поезда?» Потому что с точки зрения кинематики для описания движения мы можем взять любую систему отсчёта, важно лишь правильно записать в ней кинематическое уравнение движения.
Вот и в этой задаче, гораздо проще связать систему отсчёта с положением лодки-обнаружителя. Тогда в этой системе отсчёта лодка-обнаружитель будет покоится, а лодка-разведчик станет двигаться вдоль по прямой ON, изображённой на рисунке:
Эта прямая задаётся вектором скорости движения лодки-разведчика в системе отсчёта, связанной с лодкой-обнаружителем. Этот вектор получен вычитанием вектора скорости лодки-обнаружителя относительно земли из вектора скорости лодки-разведчика относительно земли, в полном соответствии с принципом относительности движения.
Теперь, если посмотреть внимательно на получившийся рисунок, станет понятно, что искомое минимальное расстояние между лодками в процессе их движения будет равно длине перпендикуляра, проведённого из точки, в которой находится лодка-обнаружитель (точки A), к прямой, изображающей траекторию движения лодки-разведчика в системе отсчёта, связанной с лодкой-обнаружителем. То есть длине перпендикуляра AH. Осталось найти длину этого перпендикуляра, и задача будет решена. Довольно просто, не правда ли?
Видно, что треугольник OMN подобен треугольнику AOH (они оба прямоугольные, и у них есть общий угол O). Тогда спарведливо соотношение . По теореме Пифагора находим численное значение длины ON, оно равно . Численные значения длин отрезков OA и MN равны и , соответственно. Тогда получаем, что
Расчёты дают результат км.
Итак, минимальное расстояние между подводными лодками в процессе их движения в точности равно радиусу обнаружения лодки-разведчика, поэтому она будет обнаружена. Но в какой момент это произойдет?
Через столько времени с 12:00, сколько потребуется лодке-разведчику, чтобы в системе отсчёта, связанной с лодкой-обнаружителем, двигаясь со скоростью м/с, дойти до точки H. То есть пройти расстояние OH. Длину OH ищем по теореме Пифагора из прямоугольного треугольника OAH: км. Тогда искомое время равно . Расчёты дают следующий результат: ч ч. мин. c. То есть момент обнаружения наступит примерно в 13:03:24.
Вот такое простое решение достаточно сложной задачи на относительность движения. Советую вам запомнить его и использовать при решении подобных задач на различных экзаменах и олимпиадах по физике.
Материал подготовлен репетитором по физике в Москве, Сергеем Валерьевичем
Смотрите также:
Судя по решению, имелось ввиду, что лодки находятся на одной глубине. Но в условии об этом ничего не сказано.
Написано, что в 12:00 лодка-разведчик была прямо по курсу относительно лодки-обнаружителя. По смыслу она не могла погружаться, когда это случилось, поэтому они могли быть только на одной глубине.
А почему бы сразу не применить т. Пифагора, затем просто решить квадратное уравнение?
(106-28*t)^2+(45*t)^2=90^2
2809*t^2-5936*t+3136=0
D=0
t=5936/5618=1,0566…
Можно и так, конечно. Только вот квадратное уравнение получается, как из ночного кошмара 🙂