Для многих одаренных детей поступление в школу «Интеллектуал» — это шанс развить свои способности и получить больше систематизированных знаний по определенному предмету, которые помогут получить высокие баллы при сдаче ЕГЭ, а также дополнительных вступительных экзаменов в выбранный ВУЗ. В этом заведении могут учиться ребята, проживающие не только в Москве, но и в Подмосковье: у них есть возможность оставаться в интернате, рассчитанном на 140 человек.
Государственная специализированная школа «Интеллектуал» была основана в 2002 году Евгением Владимировичем Маркеловым – российским педагогом-новатором, кандидатом исторических наук и археологом. Он назвал свое заведение экспериментальным, так как в основу обучения закладывались новые принципы, отличные от тех, которые применяют в общеобразовательных учреждениях. В первый год обучения здесь было всего 70 учеников 5-8 классов. Сейчас в «Интеллектуале» насчитывается 410 учеников 5-11 классов.
Эта школа стала основной площадкой по проблемам работы с одаренными детьми. Здесь не только четко организован учебный процесс, но и создана уютная домашняя атмосфера, благодаря чему обучение приносит только удовольствие.
Особенности обучения в школе-интернате «Интеллектуал»
Учебный процесс в этом образовательном учреждении построен на качественно новом подходе: основной принцип состоит в том, чтобы дети сами выбирали те предметы, которые им интересны и в которые они хотели бы углубиться. Девиз школы «Интеллектуал»: «Пусть дети учатся тому, чему хотят, и столько, сколько хотят».
Ученик может выбрать несколько таких предметов и максимально сконцентрироваться на их изучении. В процессе преподавания педагоги используют методику, благодаря которой учащиеся не только полноценно усваивают материал, но и совершенствуют навыки, тренируют память, учатся логически мыслить.
Перечень предметов, среди которых ребенок может выбрать интересующие именно его:
- математика;
- физика;
- химия;
- биология;
- история;
- обществознание;
- география;
- русский язык;
- иностранные языки (английский, немецкий);
- лингвистика;
- искусство;
- робототехника, IT;
- психология;
- спорт.
Учащиеся 4-11 классов могут выбрать спецкурс по:
- химии;
- филологии;
- физкультуре;
- физике;
- социально-экономическим дисциплинам;
- психологии;
- мировой художественной культуре;
- математике;
- информатике;
- истории;
- географии;
- иностранным языкам;
- биологии.
Преподавательский состав
Директором школы для одаренных детей с 2016 года и по сей день является Запольский Илья Алексеевич.
В учебном заведении работают 79 педагогов, 8 из которых имеют ученую степень.
Преподавание находится на высоком уровне. Подтверждение этому – не только многочисленные положительные отзывы об образовательной организации, но и результаты участия учеников школы «Интеллектуал» в различных предметных олимпиадах, в том числе международных:
- 2008 год – серебро (Лингвистика).
- 2010 год – золото (Информатика, Лингвистика).
- 2017 год – золото (Информатика).
- 2018 год – серебро (Лингвистика, Информатика).
После завершения этой школы многие ученики поступили в престижные отечественные (МГУ, НИУ ВШЭ, РУДН, МГИМО) и зарубежные ВУЗы.
Поступление в школу «Интеллектуал»: что потребуется от соискателей
Поступление в школу «Интеллектуал» потребует от ребенка усилий и упорного труда: сюда берут только самых талантливых. Нагрузки очень серьезные. Именно поэтому перед поступлением нужно трезво оценить свои возможности: образовательная программа этой школы гораздо сложнее той, которая применяется в средних общеобразовательных учреждениях.
Для того, чтобы стать учеником школы «Интеллектуал», нужно пройти конкурс, состоящий из трех этапов:
- Проверка знаний абитуриента в области русского языка, математики и двух предметов на выбор, в зависимости от выбранного профиля.
- Защита творческого или исследовательского проекта, который может быть выполнен в разных формах (например, аналитическая или прикладная работа). Тематика зависит от того, на какую кафедру зарегистрировался абитуриент.
- Пробная учеба в школе в течение недели.
Для участия в первом туре необходимо зарегистрироваться на сайте школы. Для тех, кто поступает в среднюю школу, экзамен состоит из теста и задания на выбор. Для поступающих в старшую школу испытания зависят от выбранного профиля. От результатов первого тура зависит, сможет ли абитуриент пройти на второй и третий отборочные этапы. День творческих работ (защита проекта) назначается отдельно.
Подготовке к поступлению нужно уделить особое внимание. Так как в школу принимают только самых талантливых и перспективных абитуриентов, вступительные экзамены отличаются высокой сложностью. Особенно это касается математики и физики. Рассчитывать сдать их, опираясь только на полученные в общеобразовательной школе знания, не стоит. Если вы хотите успешно сдать экзамен в школу «Интеллектуал», вам стоит пройти индивидуальную подготовку с репетитором.
Ниже для примера приведён разбор демоварианта вступительного экзамена в 10 класс по математике. Попробуйте решить эти задачи самостоятельно, это станет для вас полезной тренировкой.
Разбор демоверсии профильного экзамена по алгебре для поступающих в 10 класс
Задание 1. Решите уравнение . |
Рассмотрим 3 случая:
- При оба модуля раскрываются со отрицательным знаком, поэтому получается уравнение , из которого находим, что . Но этот корень не удовлетворяет условию .
- При первый модуль раскрывается с отрицательным знаком, а второй — с положительным, поэтому получается уравнение , которое верно всегда. То есть подходит любое значение , удовлетворяющее условию .
- При оба модуля раскрываются с положительным знаком, поэтому получается уравнение , из которого находим, что . Но этот корень не удовлетворяет условию .
Ответ: .
Задание 2. Решите уравнение . |
Обратим внимание, что является корнем этого уравнения. Значит, многочлен слева от знака равенства должен разделиться на . Разделим столбиком:
То есть исходное уравнение эквивалентно следующему:
Уравнение имеет два корня: и .
Ответ: и .
Задание 3. Решите неравенство
|
Обратим внимание, что , поэтому исходное неравенство эквивалентно следующему:
Последнее неравенство выполняется всегда, кроме .
Ответ: .
Задание 4. Решите неравенство
|
Преобразуем неравенство:
Область допустимых значений задаётся неравенством , то есть . Рассмотрим два случая:
- Если , то . То есть или . Решением последнего неравенства, с учётом всех ограничений, является промежуток .
- Если , то . Данное неравенство выполняется для всех из области допустимых значений, так как левая часть при этом отрицательна, а правая — положительна. При после возведения обеих частей в квадрат получаем или . Полученное неравенства выполняется для всех .
Объединяя полученные решения, получаем окончательный ответ: .
Задание 5. а) Постройте график функции . б) Исследуйте зависимость количества различных действительных корней уравнения от параметра . |
а) График функции получаем из графика функции путём стандартных преобразований (подробнее смотрите в прилагаемом видео):
Получается следующий график:
б) Исследуем, сколько точек пересечения изображённый график имеет с прямой , параллельной оси OX, в зависимости от значения параметра . В результате получаем ответ:
При уравнение не имеет корней, при уравнение имеет 3 различных действительных корня, при уравнение имеет 6 различных действительных корней, при уравнение имеет 4 различных действительных корня, при уравнение имеет 2 различных действительных корня.
Задание 6. Изобразите на плоскости множество точек , заданных неравенством . |
Изобразим на координатной плоскости прямую или , а также кривую или . Далее в каждой области, на которые разобьют плоскость эти линии, выберем точку, подставим её координаты у левую часть исходного неравенства. Если неравенство при этом выполняется, то отмечаем область, в которой находится данная точка, если нет — не отмечаем. В результате все отмеченные области составят искомое множество. Ответ получается следующий:
Задание 7. При каких один из корней уравнения больше 2, а другой — меньше 2. |
Рассмотрим функцию . Выделим три случая:
- При уравнение имеет только 1 корень. Этот случай не походит.
- При ветви соответствующей параболы направлены вверх. Нужно, чтобы эта парабола пересекла ось OX в двух точках, одна из которых расположена левее точки 2, а другая — правее. Требуемое условие задаётся в этом случае неравенством . То есть или . Из этого множества ни одно значение не удовлетворяет условию .
- При ветви соответствующей параболы направлены вниз. Нужно, чтобы эта парабола пересекла ось OX в двух точках, одна из которых расположена левее точки 2, а другая — правее. Требуемое условие задаётся в этом случае неравенством . То есть или . Поскольку мы рассматриваем только значения , то в этом случае .
Ответ: .
Задание 8. Два туриста вышли из пункта А в пункт В одновременно, причем первый турист каждый километр пути проходит на 5 минут быстрее второго. Первый, пройдя пятую часть пути, вернулся в А за случайно забытой тушенкой и, пробыв там 10 минут, снова пошел в В. В результате в пункт В оба туриста пришли одновременно. Каково расстояние от А до В, если второй турист прошел его за 2,5 часа? |
Пусть скорость второго туриста равна м/мин. Тогда скорость первого туриста такова, что выполняется уравнение: . Значит, .
Пусть расстояние от A до B равна . Время движения второго туриста мин. Время движения первого туриста мин. Первый турист прошёл в совокупности . Тогда имеет место система уравнений:
Ненулевым решением полученной системы является пара: и .
Ответ: 10 км.
Задание 9. Докажите, что при всех натуральных выражение кратно 25. |
1. Для получаем 50, что кратно 25.
2. Пусть верно для . То есть кратно 25.
3. Докажем, что верно для . Подставляем и получаем:
По предположению индукции первое слагаемое в полученном выражении кратно 25, а второе слагаемое кратно 25, так как 100 кратно 25. Значит, всё полученное выражение кратно 25. Тогда по методу математической индукции утверждение верно для любого натурального . Что и требовалось доказать.
Задание 10. Найдите сумму
|
Преобразуем данную сумму:
Примеры исследовательских заданий
Задание 11. Турист вышел из своей палатки, прошел 5 км на юг, 5 км на восток и 5 км на север, после чего снова оказался у своей палатки. Где такое могло произойти? |
Такое могло произойти если:
- Турист находился изначально точно на Северном полюсе. Тогда любое начальное направление движения будет на юг. После похождения 5 км на юг турист пройдёт 5 км на восток, затем развернётся и пройдёт 5 км на север, после чего вновь окажется на Северном полюсе.
- Если турист находится на параллели около Южного полюса, пройдя от которой по меридиану в направлении Южного полюса, турист оказывается на параллели, длина которой ровно 5 км. Тогда после прохождения 5 км на юг турист развернётся и пойдёт 5 км на восток, обойдёт всю эту параллель, вернётся в ту же точку (на тот же меридиан), повернётся и пройдёт ещё 5 км на север, в результате чего окажется в исходной точке. Возможен также вариант, что длина параллели будет 5/2 км. Тогда турист обойдёт эту параллель дважды. Или 5/3 км — тогда трижды и т.д. Получается счётное множество параллелей около Южного полюса.
Задание 12. В Скверной стране все колеса квадратные. Квадратное колесо катится по ровной дороге без проскальзывания. Нарисуйте траекторию оси скверного колеса. (Ось проходит через центр колеса). Из каких кривых она состоит? |
Траектория движения оси квадратного колеса отмечена на рисунке сплошной синей линией:
Разбор задач к демоверсии по геометрии для поступающих в 10 класс
Задание 1. В равнобедренном треугольнике ABC с основанием AC медианы пересекаются в точке O. Найдите площадь треугольника ABC, если OA = 13 см и OB = 10 см. |
По свойству медиан треугольника получаем, что , поэтому . Медиана BH является одновременно и высотой, поскольку она проведена в равнобедренном треугольнике к основанию, поэтому треугольник AOH является прямоугольным. Используя теорему Пифагора для этого треугольника, находим, что . Тогда . Кроме того, . Значит, площадь треугольника ABC равна .
Ответ: 180.
Задание 2. Диагонали трапеции пересекаются под прямым углом. Докажите, что средняя линия равна отрезку, соединяющему середины оснований. |
Пусть и . Выполним дополнительное построение. Проведём через точку C прямую, параллельную диагонали BD. Точку пересечения этой прямой с прямой AD обозначим K. Тогда четырёхугольник BCKD является параллелограммом, так как его стороны попарно параллельны. Значит, . Тогда .
Обозначим середину отрезка AK буквой F. Тогда . По свойству медианы прямоугольного треугольника, проведённой из вершины прямого угла, . То есть CF равна длине средней линии этой трапеции. Осталось доказать, что CF = MN.
Действительно, . То есть NF = MC. Значит, в четырёхугольнике MCFN противоположные стороны MC и NF равны и параллельны. Значит, этот четырёхугольник является параллелограммом. То есть . Этому же значению равна длина средней линии этой трапеции. Что и требовалось доказать.
Задание 3. В треугольник ABC (AB = 5, AC = 8, BC = 7) вписана окружность. K — точка касания этой окружности со стороной AC. Найдите: а) разложение вектора по векторам и ; б) скалярное произведение векторов и ; в) величину угла A; г) длину вектора ; д) разложение вектора по векторам и . |
а) , откуда .
в) Применим теорему косинусов для треугольника ABC: , откуда . Значит, .
б) .
г) Полупериметр треугольника . По формуле Герона находим площадь треугольника ABC: . Тогда радиус вписанной окружности равен .
Центр вписанной окружности лежит на пересечении биссектрис углов треугольника. Значит, получаем, что . Тогда , откуда . Длину BK находим по теореме косинусов, записанной для треугольника ABK: . Итак, получаем, что .
д) , откуда .
Ответ: а) ; б) 20; в) ; г) ; д) .
Поступление в школу «Интеллектуал» с репетитором
Поступление в школу «Интелектуал» с репетитором, специализирующемся на конкретной дисциплине, имеет следующие преимущества:
- Возможность решать варианты тестов прошлых вступительных кампаний, чтобы иметь представление о том, какого рода вопросы могут ожидать на экзамене.
- Персональный подход к каждому ученику и выбор оптимального темпа обучения.
- Доступное изложение нового материала, донесение до ученика даже самых сложных вещей понятным языком.
- Наличие собственной, наработанной годами методики преподавания.
Чтобы добиться хороших результатов, подготовку стоит начать как можно раньше. Например, уже летом, за год до поступления в школу «Интеллектуал».
Если вам требуется подготовка к вступительным экзаменам в школу «Интеллектуал», обращайтесь ко мне. Я являюсь профессиональным репетитором по математике и физике и не первый год успешно осуществляю такую подготовку, причём работаю не только со старшеклассниками, но и с учениками из младшей школы. Мои контакты вы найдёте на этой странице.
Материал подготовил репетитор по математике и физике в Москве Сергей Валерьевич
Добавить комментарий