В задании 14 ЕГЭ по математике выпускникам, сдающим экзамен, необходимо решить задачу по стереометрии. Именно поэтому научиться решать такие задачи должен каждый школьник, если он хочет получить положительную оценку на экзамене. В данной статье представлен разбор двух типов заданий 14 из ЕГЭ по математике 2016 года (профильный уровень) от репетитора по математике в Москве.
В правильной четырехугольной пирамиде SABCD сторона основания АВ равна 16, а высота равна 4. На ребрах АВ, CD и AS отмечены точки M, N и К соответственно, причем AM = DN = 4 и АК = 3.
а) Докажите, что плоскости MNK и SBC параллельны. б) Найдите расстояние от точки К до плоскости SBC. |
Доступен видеоразбор данного задания:
Рисунок к заданию будет выглядеть следующим образом:
а) Поскольку прямая MN параллельна прямой DA, которая принадлежит плоскости DAS, то прямая MN параллельна плоскости DAS. Следовательно, линия пересечения плоскости DAS и сечения KMN будет параллельна прямой MN. Пусть это линия KL. Тогда KMNL — искомое сечение.
Докажем, что плоскость сечения параллельна плоскости SBC. Прямая BC параллельна прямой MN, так как четырехугольник MNCB является прямоугольником (докажите сами). Теперь докажем подобие треугольников AKM и ASB. AC — диагональ квадрата. По теореме Пифагора для треугольника ADC находим:
AH — половина диагонали квадрата, поэтому . Тогда из теоремы Пифагора для прямоугольного треугольника находим:
Тогда имеют место соотношения:
Получается, что стороны, образующие угол A в треугольниках AKM и ASB, пропорциональны. Следовательно, треугольники подобны. Из этого следует равенство углов, в частности, равенство углов AMK и ABS. Так как эти углы соответственные при прямых KM, SB и секущей MB, то KM параллельна SB.
Итак, мы получили, что две пересекающиеся прямые одной плоскости (KM и NM) соответственно параллельны двум пересекающимся прямым другой плоскости (SB и BC). Следовательно, плоскости MNK и SBC параллельны.
б) Поскольку плоскости параллельны, расстояние от точки K до плоскости SBC равно расстоянию от точки S до плоскости KMN. Ищем это расстояние. Из точки S опускаем перпендикуляр SP к прямой DA. Плоскость SPH пересекается с плоскостью сечения по прямой OR. Искомое расстояние есть длин перпендикуляра из точки S к прямой OR.
Действительно, KL перпендикулярна плоскости OSR, так как она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости (OR и OS). Перпендикулярность OR и KL следует из теоремы о трёх перпендикулярах. Следовательно, KL перпендикулярна высоте треугольника ORS, проведенной к стороне OR. То есть эта высота перпендикулярна двум пересекающимся прямым, лежащим в плоскости KMN, а значит перпендикулярна этой плоскости.
Ищем стороны треугольника SOR. Сторону SR ищем по теореме Пифагора из прямоугольного треугольника RSH: . Длину SP находим по теореме Пифагора из прямоугольного треугольника PSH: . Треугольники SOK и SPA подобны (докажите это сами) с коэффициентом подобия . Тогда и . Из прямоугольного треугольника SPH находим . Из теоремы косинусов для треугольника POR находим, что . Итак, нашли все стороны треугольника SOR.
Из теоремы косинусов для треугольника SOR находим , тогда из основного тригонометрического тождества находим . Тогда площадь треугольника OSR равна:
С другой стороны эта площадь равна , где h — искомая высота. Откуда находим .
В правильной треугольной призме АВСА1В1С1 сторона основания АВ равна 6, а боковое ребро АА1 равно 3 . На ребре В1С1 отмечена точка L так, что B1L = 1. Точки К и М – середины ребер АВ и А1С1 соответственно. Плоскость γ параллельна прямой АС и содержит точки К и L.
а) Докажите, что прямая ВМ перпендикулярна плоскости γ. б) Найдите объем пирамиды, вершина которой – точка М, а основание – сечение данной призмы плоскостью γ. |
Плоскости оснований призмы параллельны, поэтому сечение будет пересекать эти плоскости по прямым LS и DK, которые также параллельны. Пусть B1M — высота треугольника A1B1C1, а BE — высота треугольника ABC. Тогда рисунок будет выглядеть следующим образом:
Из прямоугольного треугольника B1MA1 находим по теореме Пифагора . Из прямоугольного треугольника B1QS находим по теореме Пифагора . Тогда . Кроме того (половина высоты BE правильного треугольника ABC). Треугольники MQT и PTB подобны по двум углам (углы PTB и MTQ равны как вертикальные, углы TPB и MQT равны как накрест лежащие при параллельных прямых MQ, PB и секущей PQ). Их коэффициент подобия равен .
Далее из прямоугольного треугольника MBE находим . Используя доказанное подобие, находим . Аналогично, . Следовательно, .
Проверяем, является ли треугольник TPB прямоугольным. Для этого используем теорему, обратную теореме Пифагора. , , . Получаем:
Итак, треугольник TPB прямоугольный с прямым углом T. Доказано, что . По теореме о трёх перпендикулярах (разберитесь самостоятельно, почему это так). Получается, что MB перпендикулярен двум пересекающимся прямым, лежащим в плоскости DKS, а следовательно перпендикулярен этой плоскости.
б) Сечение DLSK — трапеция, площадь которой равна:
Тогда объём искомой пирамиды равен:
Материал подготовлен репетитором по математике, Сергеем Валерьевичем
отличное решение -сергей