Статьи с метками ‘задачи по геометрии’

В данной статье разобраны решения геометрических задач, встречающихся в вариантах профильного ЕГЭ по математике. Всего таких задач 5: 3 из первой части и 2 из второй. По крайней мере, такой расклад был на момент написания статьи. Представленные материалы будут полезны тем, кто только начал подготовку к предстоящему экзамену. Здесь вы найдёте геометрические задачи ЕГЭ с решениями, снабжёнными подробными и понятными комментариями от профессионального репетитора по математике. Представлен также видеоразбор решений каждого задания.
Читать дальше »

В задании 14 ЕГЭ по математике выпускникам, сдающим экзамен, необходимо решить задачу по стереометрии. Именно поэтому научиться решать такие задачи должен каждый школьник, если он хочет получить положительную оценку на экзамене. В данной статье представлен разбор двух типов заданий 14 из ЕГЭ по математике 2016 года (профильный уровень) от репетитора по математике в Москве.
Читать дальше »

Данную задачу прислала одна из читательниц моего блога с просьбой объяснить решение. Задача показалась мне достаточно интересной, поэтому я решил написать про неё отдельную маленькую статью. Итак, давайте вместе разберёмся с задачей и её решением.

Читать дальше »

Когда вы только начинали изучать квадратные корни и способы решения иррациональных уравнений (равенств, содержащих неизвестную под знаком корня), вы, вероятно, получили первое представление об их практическом использовании. Умение извлекать квадратный корень из чисел также необходимо для решения задач на применение теоремы Пифагора. Эта теорема связывает длины сторон любого прямоугольного треугольника.

Читать дальше »

Считается, что чем больше различных решений существует у задачи, тем она интереснее с математический точки зрения. В этом отношении, задача, которую мы рассмотрим сегодня, является одной из наиболее интересных в школьном курсе геометрии. Она же, кстати, была предложена для решения в задании 24 модуля «Геометрия» демонстрационного варианта ОГЭ по математике в 2015 году. Так что попробуем решить её максимально возможным количеством способов, не выходящих за рамки школьного курса. Присылайте, пожалуйста, свои варианты решения в комментариях или на почту репетитора по математике и физике. С удовольствием опубликую их и поставлю ссылку на вашу анкету или сайт, если это необходимо.

Читать дальше »

Как известно, соответствующий раздел в школьном курсе геометрии изучается уже в 7 классе. Однако, для многих школьников этот материал оказывается трудным для запоминания. В результате на экзамене, будь то ЕГЭ или дополнительное вступительное испытание по математике в вузе, бедному сдающему приходится в муках вспоминать, что же он изучал по этой теме в далеком 7 классе. К сожалению, зачастую безуспешно. Решим эту проблему раз и навсегда! Ниже приведен основный справочный материал по данной важнейшей теме школьного курсе геометрии от репетитора по математике и физике.

Читать дальше »

Решение задач на нахождение длин высот, медиан и биссектрис треугольника по его сторонам

Для решения задач по геометрии, связанных с треугольниками, важно усвоить одну простую, но важную истину. Существует третий признак равенства треугольников («по трем сторонам»), из которого следует, что не существует двух различных треугольников с одинаковыми сторонами. Следовательно, зная длины всех сторон треугольника, можно узнать об этом треугольнике все, что нужно. В том числе длины его медиан, биссектрис и высот. Разберем более подробно, каким образом это можно сделать.

Читать дальше »

Предлагаю на этот раз устроить что-то вроде «доказательного марафона» по решению задач, которые предлагаются девятиклассникам в вариантах ГИА по математике. Связаны они с доказательством несложных, но в то же время очень полезных геометрических фактов. В статье намеренно не приведены подробные решения задач, лишь некоторые наброски и подсказки. Постарайтесь преодолеть эту марафонскую дистанцию самостоятельно, без ошибок и за один подход.
Читать дальше »

В задании 23 из второй части диагностической работы для 9 класса по математике, прошедшей в московских школах 19 декабря 2011, была предложена геометрическая задача. Для ее решения от учеников требовалось знание так называемой теоремы о секущей и касательной, о существовании которой многие девятиклассники, как оказалось, и не подозревали. Выявив сей пробел, постараемся тут же его закрыть.
Читать дальше »