Остаток от деления отрицательных чисел

Пятница, Октябрь 28, 2016

В этой статье я расскажу о том, как правильно находить остаток от деления отрицательных чисел. Этой теме, к сожалению, уделяется очень мало внимания в школе, хотя для понимания учеником базовых основ математики она чрезвычайно важна. Именно поэтому, как репетитор по математике, на своих занятиях я разбираю это материал с учениками во всех подробностях. Это значительно упрощает дальнейшую подготовку к ЕГЭ, ОГЭ, вступительным экзаменам и олимпиадам по математике.

Итак, приступим. Чтобы разделить друг на друга два целых числа с остатком, нужно воспользоваться следующей теоремой:

Для любых целых чисел a и b, причём b\ne 0, найдётся единственная пара целых чисел q и r, таких что a = q\cdot b + r, где 0\leqslant r<|b|.

Здесь a — делимое, b — делитель, q — неполное частное, r — остаток. Сразу обращаем внимание, что остаток r — это неотрицательное число. Понятно, что условие b\ne 0 возникает потому, что деление на нуль невозможно.

Звучит довольно сложно, но на самом деле в этой теореме нет ничего сложного. Чтобы во всём разобраться, перейдём к примерам.

Примеры нахождения остатка от деления отрицательных чисел

Пример 1. Деление с остатком положительного целого числа на положительное целое число.

Допустим, что требуется разделить с остатком 27 на 4. Вопрос состоит в том, сколько раз число 4 содержится в числе 27? Но мы знаем, что нет такого целого числа, на которое можно умножить 4, чтобы получить 27. Поэтому вопрос нужно переформулировать. На какое число нужно умножить 4, чтобы получить число, максимально близкое к 27, но не превзойти его? Очевидно, что это число 6. Если 4 умножить на 6, то получится 24. До исходного делимого 27 не хватает 3. Следовательно, остаток от деления 27 на 4 составляет 3:

27 : 4 = 6 ост. 3.

Пример 2. Деление с остатком отрицательного целого числа на положительное целое число.

Что если требуется найти остаток от деления отрицательного целого числа -15 на положительное целое число 4? Начнём с того, что неполное частное должно получиться отрицательным, поскольку при делении отрицательного числа на положительное, результат получается отрицательным. Кто-нибудь может предположить, что неполное частное в данном случае должно быть равно -3. Но в этом случае, умножив -3 на 4, мы получим -12. И чтобы получить исходное делимое -15, нужно к результату -12 прибавить число -3, которое не может быть остатком, потому что остаток не может быть отрицательным!

Поэтому в данном случае неполное частное равно -4. В этом случае, умножая -4 на делитель 4, мы получаем -16. И теперь, чтобы получить исходное делимое -15, нужно к этому результату прибавить число 1. Оно неотрицательно и меньше модуля делителя (то есть 4). То есть оно и является остатком:

-15 : 4 = -4 ост. 1.

Пример 3. Деление положительного целого числа на отрицательное целое число.

Рассмотрим теперь пример деления с остатком положительного целого числа 113 на отрицательное целое число -3. Неполное частное, как и в предыдущем примере, должно быть отрицательным, потому что при делении положительного числа на отрицательное, результат отрицателен. Давайте думать, чему конкретно равно неполное частное. Очевидно, что оно равно -37. Действительно, при умножении -37 на -3 получается 111. Теперь, чтобы получить исходное делимое, нужно прибавить к этому результату число 2, которое неотрицательно и меньше модуля делителя (то есть модуля -3, что равно 3). Итак, наш ответ:

113 : (-3) = 37 ост. 2.

Пример 4. Деление с остатком отрицательного целого числа на отрицательное целое число.

Ну и последний пример. Отрицательное целое число -15 требуется поделить с остатком на отрицательное целое число -7. Неполное частное должно быть положительно по знаку, потому что при делении отрицательных чисел результат получается положительным. И оно равно 3. Действительно, умножая 3 на -7, получаем -21. Теперь к этому числу нужно прибавить положительное и меньшее модуля -7 (то есть 7) число 6, чтобы получить наше исходное делимое -15. Следовательно, остаток от деления отрицательных чисел -15 на -7 равен:

-15 : (-7) = 3 ост. 6.

Проверьте, насколько хорошо вы поняли этот урок. Найдите самостоятельно остаток от деления отрицательных чисел:

а) -16 на 7;

б) 8 на -9;

в) -114 на -4.

Свои ответы пишите в комментариях, я их проверю.

Материал подготовил репетитор по математике и физике по скайпу, Сергей Валерьевич

Добавить комментарий